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Natural convection of viscoelastic fluids in a vertical slot 
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Linear stability theory is applied to the natural convection of slightly elastic, 
viscous fluids in an infinitely long vertical slot. Travelling, as well as stationary, 
disturbances are considered. It is found that the elasticity (i) slightly stabilizes 
the stationary disturbances while strongIy destabilizing the travelling dis- 
turbances, (ii) strongly increases the wave speed while slightly decreasing the 
wavenumber and (iii) reduces the transition Prandtl number, which separates the 
stationary cells from the travelling waves, from its value of 12.7 for Newtonian 
fluids. 

Experiments are carried out with a viscoelastic fluid prepared by mixing 
Separan AP30 with water, giving a PrsLndtl number of about 30. This fluid is 
shown to produce wave instability at a Grashof number between 3900 and 4300. 
Under the same conditions, a Newtonian fluid is shown to remain stable to both 
stationary and travelling disturbances. 

1. Introduction 
In  the past decade, considerable work has been done on the isothermal stability 

of viscoelastic fluids. Yet, studies on the thermal stability of these fluids are 
recent and rather few, and are restricted to problems related to that of BBnard. 
The purpose of this investigation is to consider the effect of elasticity on the 
stability of natural convection in a vertical slot. Since the stability of the BBnard 
and slot problems differ in many ways, the study of the latter is expected to 
increase our understanding of the thermal stability of viscoelastic fluids. 

Two special slot problems frequently considered for Newtonain fluids assume 
either uniform of linearly varying plate temperatures. The first problem (with 
uniform plate temperatures) has, depending on the parameter ranges, two solu- 
tions, which are called the conduction and convection regimes. The primary 
flow of the convection regime, although well known qualitatively, has not been 
analytically studied to the degree that may be necessary to determine its 
stability. On the other hand, the second problem (with linearly varying plate 
temperatures), although it has a unique solution, is somewhat difficult to realize 
experimentally. In  view of these facts, it was decided to concentrate on the 
analytical and qualitative experimental aspects of the conduction regime of the 
first problem. 

The literature on the thermal stability of Newtonian fluids in a slot is quite 
extensive, and will not be reviewed here. For a complete list of references the 
reader is referred to the article by Hart (1971). The original work on visco- 
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elastic fluids appears to be that of Herbert (1963) on plane Couette flow heated 
from below; he found a finite elastic stress in the undisturbed state to be required 
for elasticity to affect the stability (this, of course, should be expected in view of 
the fact that he was only interested in stationary disturbances); using a three- 
constant rheological model due to Oldroyd (1950) he demonstrated, for finite 
rates of strain, that the elasticity has a destabilizing effect which results solely 
from the change in apparent viscosity. In another study, Green (1968) reported, 
for free boundaries, the overstability of the Bhard  problem in terms of a two- 
constant model due to Oldroyd. The same problem in terms of the Maxwell 
model, including rigid boundaries as well and the effect of elasticity on the 
variational principle, was investigated by Vest & Arpaci (1969 b ) .  Both studies 
expected and found elasticity to have no effect on stationary disturbances but 
a large effect on travelling disturbances. The latest work on the stability of the 
viscoelastic B6nard problem is that of Sokolov & Tanner (1972), who tried, after 
some general considerations, to consolidate their results with those of Green 
(1968) and Vest & Arpaci (1969b). 

Literature on the isothermal stability of viscoelastic fluids becomes relevant 
to the thermal stability of these fluids only during the process of selecting the 
appropriate rheological models. Consequently, excluding a few problems related 
to boundary layers, to inclined surfaces and to Couette flow, we concentrate 
on the literature associated with the Taylor problem, which has received by far 
the most attention in view of its simplicity and its relevance to viscometry. 
The earliest work which deals with plastic rather than elastic effects appears to 
be that of Graebel (1961), who showed that a Reiner-Rivlin fluid is less stable 
than a Newtonian fluid. In  a series of papers, Thomas & Walters (1963, 1964a, b )  
and Beard, Davis & Walters (1966) employed the Walters ‘ B ’  fluid. Slightly 
elastic fluids were shown to be less stable, and highly elastic fluids even less 
stable, than a Newtonian fluid. Failure to find stationary instability for certain 
ranges of the parameters was attributed to the wave instability in these ranges; 
later this was indeed found t o  be the case. By contrast, employing the Walter8 ‘ A  ’ 
fluid, Chan Man Fong (1965) obtained increased stability, which suggests that 
the critical Taylor number may be quite sensitive to the rheological model con- 
sidered for stability problems. Furthermore, Datta ( 1964) demonstrated, using 
a three-constant second-order Rivlin-Ericksen model, the instability to be 
greatly affected by the material constants of the rheological model. Along the 
same lines, Miller & Goddard (1967) employed the Coleman-No11 model with 
fading memory; they concluded that eight material functions are necessary to 
prescribe the fluid and six of these appreciably influence the problem; their 
experiments with a variety of polymer solutions showed these to be less stable 
than a Newtonian fluid. In the present study, we consider a convected Maxwell 

(1)  
fluid defined by 

where rii is the deviatoric part of the stress tensor, h andp are material constants, 
ci j  is the strain-rate tensor and in terms of Tij, for example, 

Tij  + h f3rijpt = 2FEij, 
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This model, as demonstrated by Oldroyd ( 1950), combines simplicity and tensorial 
invariance with a certain ability to predict qualitatively the behaviour of visco- 
elastic fluids. Since we are primarily concerned with qualitative effects of 
elasticity on the stability of the slot problem, the present model appears to be 
adequate for our purpose. Clearly, the capacity of this model to  predict rheo- 
logical behaviour, compared with a model such as the one used by Miller & 
Goddard, is somewhat limited. However, since the stress-strain rates involved 
with buoyancy-driven flows are orders of magnitude smaller than those associated 
with forced flows, the use of this model €or buoyancy-driven flows might be 
expected to yield more realistic results than those which would be obtained by 
its application to forced flows such as the Taylor problem. 

2. Formulation 
2.1. General considerations and primary fiow 

Consider the natural convection of a viscoelastic fluid in a vertical slot. Let the 
vertical walls of the slot be a distance d apart and be kept at uniform but dif- 
ferent temperatures, say To and TI. For a Boussinesq fluid, neglecting the viscous 
dissipation (note that the elastic part of the fluid produces no dissipation), we 
have 8, v, + v k  ak 211 = - ( 1 h O )  8, P + Y 9 8 4  + ( 1/Po) a, 7jl, ( 2 )  

8,T+vka,T = ~ a ~ a ~ T ,  (3) 
7ki+t~'&7kl = pu(a,vk+akvi), (4) 

aivi = 0, ( 5 )  
where y = (po-p)/po(T-Tm) is the coefficient of thermal expansion, po the 
reference value of the density, p the excess pressure over the hydrostatic value, 
A, = (1,0, O ) ,  8 = T - T,, T, = &(To + Tl) and the other notation is conventional. 
The boundary conditions to be satisfied in this formulation are 

1 (6) 
u( f. frd) = v( f. i d )  = w( k Qd) = 0, 

T(  - Q d )  = To, T (  + i d )  = Tl. 
It can readily be shown that the rheological model selected has no effect on 

the primary flow corresponding to Newtonian fluids, 

where Y = y/d,  6 = ( F  - T,,,)/AT, AT = TI - To, = ;ild/vG, G = qyATd3/v2, over- 
bars designate dimensional properties of the base flow and G is the Grashof 
number. 

2.2 .  Xtability problem 
Following the usual steps of linear stability theory, eliminating the shear stress, 
we obtain for the X momentum (in the direction of the gravitational field) 

A 

(7) @ = y,  0 = 1-y-1y3, 2 4  6 

iaxC[ia(8 + C )  U + VDh] = LZ'XGP + ia(D2 U + 20x0 U + UD2x 
- [a2 +P2 - 2(Dx)21 u> + (Dx/x)  
x {D2V+2DxDV+ V D 2 ~ - [ ~ 2 + / 3 2 - 2 ( D ~ ) 2 ]  V> 
+2(D2x/x)DV+(D3V-2DxD2x/x) J'+iaxT+, (8) 
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for the Y momentum (perpendicular to the plates) 
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ictXG(&+c) V = - x G D P + { D ~ V + ~ D X D V +  VD2x-[a2+/32-2(Dx)2] V ] ,  ( 9 )  

for the Z momentum 

iaXG(&+c) I.V = -i/3xGP+{D2W+2DxDI.Y+ WD2x-  [a2+pa-2(Dx)2] W ) ,  
(10) 

( 1 1 )  
and for continuity iaU+DV+i/3W = 0, ( 1 2 )  
with U (  f 4) = V (  f 8) = W (  ? 4) = T+( -e 3) = 0, (13 )  

where D = d /d  Y ,  a and /3 are the (real) wavenumbers in the X and 2 directions, 
c = c,+ici is the (complex) wave speed, X = x /d ,  Y = y/d, Z = z/d, tf = t f lm/d,  
U,, = vG/d, U' = u/Um, V' = v/qn, W' = w/Um, T' = (T - T,)/AT, p' = pipo Oh, 
I' = Vto/d2, R = Gu, u = V/K,  

for the thermal energy 

( 0 2 -  c t 2 - p )  T+ = ia~( ' i i  + c )  T +  + RVDG 

- - - 

{u',v', ~ ' , p ' ,  T'} (X, Y ,  Z,t+) = { U ,  V ,  W ,  P, T+) (oI,/~,c; Y )  
x exp [i(aX +/3Z +act+)] 

and x = 1 +ial?C(O+c). Here R denotes the Rayleigh number, u the Prandtl 
number and to = PIG*, G* being the modulus of shear rigidity. 

It can be shown, after lengt,hy but straightforward calculations (see Goziim 
1972 for details), that  Squire's (1933) theorem continues to  hold for the present 
problem, and one need only consider two-dimensional disturbances. 

Employing the present nomenclature for two-dimensional disturbances and 
for convenience, introducing 0 = - iaTf and eliminating P and U, we have 

i a G ~ [  (a + C) ( D2 - a2) V - (0%) Vl- x D 0  
= D4 v + Jf3D3 V + M2D2 V + J!lD V + j fo  V ,  ( 14) 

A 

(D2 - a2) 0 = iaR(& + c) 0 - iaR VDO, 
V (  fi) = DV( ++) = 0 ( ? Q )  = 0, 

(15) 
(16 )  

where 
Ma = 2( 1 - 1 1 ~ )  Dx, 
M, = - 2a2 + 3( 1 - I/x) D2x - ( I  - I /X) '  
HI = - 2a( 1 - l / x )  Dx + 2( 1 - 112, D3x + 4( 1 - l/X)2DXD2X 

- 4 ( 1 / x  - 1/x2) (DXl3, 

- 3(D2x)Ix + 4(Dx)41x2 - ( S I X )  ( 1  - 1lx) D2x(Dx)2. 
No = a4 + D4x - a2( 1 - l / x )  D2x - 2a2( 1 - 1/x2) (Ox), - 4(DxD3x)/x 

Furthermore, because of the rheological model employed, the foregoing formula- 
tion is physically meaningful only when the effect of elasticity is small. Accor- 
dingly, assuming GI? < 1, the system may be reduced to 

(17)  
(18) 

( 1 9 )  

(D2 - 0 1 ~ ) ~  V + iaGx[ VD2& - (a + C) (D2 - 012) v] +xDO = 0, 

V(  f 4) = DV( _+ 8) = @( f 8) = 0. 

(D2 -a2) 0 - iaR[ VD,$ - (6 + c )  01 = 0, 
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For the stability of viscoelastjc Poiseuille flow, Chun & Schwarz (1968) pre- 
viously obtained (17) with 0 = 0. Also, Mook (1971) recently demonstrated that 
(17) with 0 = 0 is the simplest possible equation showing the effect of elasticity 
on the Orr-Sommerfeld equation. 

We proceed now to  the solution of (17)-( 19)) which, with fixed g, a, c and I?, 
constitute an eigenvalue problem for G. The problem is not self-adjoint but, 
following Roberts (1960)) it can be related to variational problems employing 
adjoint systems. (Gozum (1972) gives a formulation of this nature; a convenient 
reference for the application of this concept to the formulation and solution of 
a variety of problems is Chandrasekhar (1961).) The use of the same concept for 
a numerical solution of the present problem, in view of the large number of 
variable coefficients involved in (17) and (18), is not practical. Here, we con- 
veniently follow a procedure which combines the Galerkin method with the 
solution technique used for adjoint systems. 

3. Method of solution 
First, let (17) and (18) be rearranged as 

(D2-a')'V = -iaG~[VD~-(.ii+ia/aat+)(D'-a~) V]-xI )@,  ( 1 7 ~ )  

( 0 2  - a2) 0 = - iaR[ V D  4 - (.a. + ia/aat+) 01, (18a) 

subject to (19). I n  contrast to the application of the Galerkin procedure, which 
requires the selection of trial functions both for velocity and temperature, here 
we select trial functions only for the temperature. The form of ( 1 7 ~ ) )  (18a) and 
(7) suggests the set 

W m 

0 = a , c o s h ~ Y + i  2 b,sin,u,Y, 
n = l  n = l  

withhz = &an- l)nand,uL, = 2nn(n = 1 , 2 , 3 ,  ...), wherea,andb,arerealfunc- 
tions of time. 

Inserting (20) into (1 8 a ) ,  solving (1 8 a )  for V and introducing this V and (20) 
into the right-hand side of (17a) reduces (17a) to  a fourth-order, ordinary, non- 
homogeneous differential equation with constant coefficients. Integration of this 
equation taking into consideration the appropriate boundary conditions gives 
a new V .  Using this V and (20)) we orthogonalize (18a)  with respect to cos A: Y 
and sinp, Y. The resulting set has the general form 

AdX/dt+ = B X .  (21) 

The explicit forms of the matrices A, B and X are rather lengthy, and are not 
given here (see Gozum 1972 for details). If (20) is truncated after N terms, (21) 
represents 6N differential equations. 

The eigenvalue problem is solved by finding the latent roots of the matrix 
A-1B, when the onset of the instability is caused by travelling disturbances 
(c, += 0), and for stationary disturbances, by investigating the sign change of 
det B. The complete spectrum of eigenvalues is obtained by transforming the 
matrix A-18 to the upper almost triangular (Hessenberg) form, and then 
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employing the QR algorithm (see, for example, Wilkinson 1965, p. 515). Sub- 
routines for both these methods are available on the Michigan Terminal System. 
The accuracy of the eigenvalue subroutine is tested by computing the difference 
between tr A-'B and the sum of the eigenvalues. In all cases this difference was 
found to be less than 0.01 %. When an N-term approximation is used in (20), 
A-1B has 6N complex eigenvalues, say cN ( N  = 1,2 ,3 ,  , . . , 6 N ) .  If the eigenvalues 
are rearranged such that Im ( c l )  > Im (cz )  > . . . > Im (cslv),  then (17a), (18a) and 
(19) are neutrally stable when Im (cl) = 0, stable when Im ( c l )  > 0 and unstable 
when Im ( c l )  < 0. When Re ( c l )  + 0, unstable disturbances grow in the form of 
travelling waves; when Re (cl) = 0, unstable disturbances grow into stationary 
cells. For the latter case a necessary and sufficient condition is the vanishing of 
det B. This approach decreases the computer time considerably, and is also used 
as a check during the evaluation of the eigenvalues of A-'B. 

4. Results and discussion 
First, after eliminating the effect of elasticity from the formulation, the 

accuracy of the present method of solution was checked with the literature on 
Newtonian fluids. As was recently reported by Korpela, Goziim & Baxi (1973), 
the instability in a slot sets in for u < 12.7 in the form of stationary cells and 
for u > 12.7 in the form of travelling waves. For u = 10-3, for example, the 
present method of solution yields results which agree to within 0.1 yo with those 
obtained by Vest & Arpaci ( 1 9 6 9 ~ )  for stationary disturbances. Beyond u = 12.7, 
it yields results which asymptotically approach those obtained by Gill & Kirkham 
(1970) for travelling waves corresponding to u + m; at u = lo4, for example, the 
present method and that of Gill & Kirkham give identical results for the wave- 
number and the wave speed, while differing by 8 %  on the critical Grashof 
number. Furthermore, the present method yields for travelling waves a critical 
Grashof number identical to that obtained by Korpela et al., who followed 
the usual Galerkin approach. These comparisons increase confidence in the 
convergence of the present method of solution. 

Now we proceed to viscoelastic results. A few checks with N = 10 show the 
results based on N = 8 to be accurate to within 2 yo. As might be expected, the 
inherent complexity of the present problem makes a priori physical arguments 
difficult. From the results plotted in figures 1-4, we learn that slightly visco- 
elastic fluids slightly stabilize stationary disturbances, strongly destabilize wave 
disturbances, slightly decrease the critical wavenumber and strongly increase 
the critical wave speed. However, a posteriori arguments present no difficulty; 
fist, in spite of well-known differences between the BQnard and slot problems for 
Newtonian fluids, elasticity appears to affect these problems in the same way, 
except for stationary disturbances. It does not affect the BBnard problem for 
these disturbances; this fact can readily be seen by inspecting the effect of I' 
(and, consequently, that of x) on the disturbance equations associated with the 
BQnard problem. 

Second, the effect of Prandtl number on the present problem can easily be 
predicted; first of all, let u > 10 because of the inherent nature of viscoelastic 
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r x 104 

FIGTIRE 1. Strong destabilizing effect of elasticity for various Prandtl numbers. The 
subscripts N and v stand for ‘Newtonian’ and ‘viscoelastic ’ respectively. 

2 4  u =50 1 

I I I  I I 
0.01 0.05 0.1 0.2 0.5 - 1 

r x 104 

FIGURE 2. Slight effect of elasticity on the critical wavenumber 
for various Prandtl numbers. 

fluids. Then, for an order-of-magnitude argument, we may use for (T --f 00 and 
I? + 0 the result Gc N I / d  previously obtained by Gill & Kirkham (1970); 
consequently, in the marginal state, we have x = 1 +O(r/at), which shows the 
effect of elasticity to decrease with increasing (T. Combining this result with the 
fact that elasticity has a slight effect on stationary disturbances but a strong 
one on travelling ones, we conclude that the maximum effect of elasticity 
should occur on the wave side of the transition between stationary cells and 
travelling waves, which is in the neighbourhood of (T = 12. This is why figure 4 
is plotted for this value of the Prandtl number, and for reference, the numerical 
results used in this figure are tabulated in table 1. 
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FIQURE 3. Strong effect of elmticity on the critical wave speed 
versus Prandtl number. 

0.01 0.02 0.05 0.1 0.2 
r x i w  

FIGURE 4. Effect of elasticity on the critical Grashof number for 
stationary and travelling disturbances. cr = 12. 

5. Experiments 
The goal of the experimental programme was a rather modest one; i t  was not 

to  determine the adequacy of the Oldroyd ' B ' fluid for problems falling into the 
same category as the present one, nor was i t  to support qwntitatively the preceding 
analytical results; the main interest was in finding qualitative experimental 
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0 2.65 7726 0 
0.05 2.65 7800 0 
0.1 2.65 8200 0 

0.01 0.705 9800 7.3 
0.02 0.675 8300 7.8 
0.05 0.630 7125 8.1 
0.2 0.600 6080 8.5 

TABLE 1. Effect of elasticity on the critical Grashof number for stationary and travelling 
disturbances, u = 12 

6 

20 30 40 50 100 150 
h 

FIGURE 6. Measured critical Rayleigh number for various aspect ratios (Newtonian test 
fluid is silicone oil DC 200/2). u = 30. 0. stable; x , travelling waves; -, analytical 
R, for h -+ co; - - -, experimental R, = f(h). 

support for the fact that slightly viscoelastic fluids strongly destabilize wave 
disturbances, which is the major outcome of the present anaIyticaI study. 

The apparatus, originally constructed by Vest (1967) to observe the onset of 
instability by flow visualization and temperature measurements, was modified 
by increasing the aspect ratio to a maximum of 105 so that the conduction 
regime could be approached. Experiments were carried out with a viscoelastic 
sample which was obtained by adding very small amounts of Separan AP30 to 
water. The viscosity of the sample was measured using a Brookfield Synchro- 
Lectric viscometer. At about 20 "C, the viscosity of the sample was found to be 
4,3-8 and 3.5 centipoise for speeds of 6,12 and 30r.p.m., respectively. Under the 
present shear-rate conditions, provided that the thermal conductivity, specific 
gravity and specific heat of the sample are close to those of water, CT = 30 is 
obtained after averaging. With the slot of 6 mm width, for the properties of the 
sample at about 20°C,  the Grashof number turns out to be G = 16AT. Conse- 
quently, very large temperature differences are required to attain Grashof 
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numbers in the neighbourhood of 1000. Experiments up to  temperature dif- 
ference AT = 10 "C showed no change in the stable flow. Since larger temperature 
differences cannot be justified because of the variation of fluid properties, an 
alternative was to increase the width of the slot so that small temperature dif- 
ferences start instability. For example, a slot of 2cm width gives an aspect 
ratio of about 35 and appears t o  be suitable for the purpose. The flow pattern 
in this slot was visualized by injecting ink into the fluid. At G = 3900 the flow 
was stable while G = 4300 indicated wave motions. Figure 5 (plate 1) shows the 
waves a t  G' = 5500. On the other hand, as seen from figure 6, a Newtonian fluid 
(silicon oil DC 200/2) with the same Prandtl number remains stable until 
G' = 6000. 

Dr Gozuni was killed in a car accident in May 1972, and this paper has been 
extracted from his P1i.D. thesis by V. S. A. Thanks are expressed to  Prof. C. M. 
Vest and Prof. S. A. Korpela for their remarks on an earlier version of the paper. 
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